ICT-FP7-STREP-214755/
Quas/modo QUASIMODO
February 11, 2010

i—* . i Page 1 of 10 S ROGRAMME

Project no.: ICT-FP7-STREP-214755

Project full title: Quantitative System Properties in Model-Driven Design
Project Acronym: QUASIMODO

Deliverable no.: D1.3

Title of Deliverable: Model Process Improvement

Contractual Date of Delivery to the CEC: Month 24
Actual Date of Delivery to the CEC: Month 24 (February 10, 2010
Organisation name of lead contractor for this deliverable: P02 ESIRU)
Author(s): Frits Vaandrager
Participant(s): all
Work package contributing to the deliverable: WP 1
Nature: R
Version: 1.0
Total number of pages: 10
Start date of project: 1 Jan. 2008 Duration: 36 month
Project co-funded by the European Commission within the Seventkramework Programme (2007-2013)
Dissemination Level
PU Public X
PP Restricted to other programme participants (including then@dssion Services)
RE Restricted to a group specified by the consortium (includimgG@ommission Services)
CO Confidential, only for members of the consortium (includihg Commission Services)
Abstract:

This deliverable describes the view of the QUASIMODO promt model process improvement, and
lessons we learned concerning the modelling process by doenQUASIMODO case studies.

Keyword list: quality of models, model process improvement

the

ICT-FP7-STREP-214755 / QUASIMODO Page 2 of 10 Public

Contents
Abbreviations 2
1 Introduction 3
2 Whatis a Good Model? 4
3 Case Studies 6
3.1 ZeroconfCase Study e 6

3.2 ChessCaseStudy
3.3 Oc®casestudy e

3.4 Scootercasestudy. 8
4 Future Work 9
Bibliography 9

ICT-FP7-STREP-214755 / QUASIMODO Page 3 of 10 Public

1 Introduction

This deliverable describes the view of the QUASIMODO prog@tmodel process improvement,
and the lessons we learned concerning the modelling pragedsing the QUASIMODO case
studies.

Eykhoff [5] defined amathematical modeds a “representation of the essential aspects of
an existing system (or a system to be constructed) whickepte&nowledge of that system in
usable form”. Mathematical models can take many formsugtiolg dynamical systems, statis-
tical systems or differential equations. Within QUASIMOD®@e study certain specific types of
discrete event dynamical systems, namely timed, prolstibiknd priced automata.

During the last two decades, research on timed, probab#istl priced automata focussed on
theory and algorithms for efficient exploration of largeistapaces. This research has been quite
successful, and by now model-based verification technot@gyreached the maturity in which
it can be (and has been) applied to many non-trivial embedgsi#ms applications. However,
as pointed out by [3], “current research seems to take thetaation of verification models
more or less for granted, although their development tylgicaquires a coordinated integration
of the experience, intuition and creativity of verificatiand domain experts. There is a great
need for systematic methods for the construction of vetiboamodels to move on, and leave
the current stage that can be characterized as thrabdel hacking The ad-hoc construction of
verification models obscures the relationship between fe@ahel the systems that they represent,
and undermines the reliability and relevance of the vetificeresults that are obtained.” Another
reason why we need to pay more attention to the constructimodels is that this is an excellent
way to find more bugs. Our experience is that one finds moredhugsg the careful construction
of models than during the subsequent model checking ongeptiase. In a case study where
we applied Uppaal to model and analyze the Zeroconf prof@pive found six places where
RFC 3827 [4] is incomplete/unclear. All of these six mistd&etwiguities were found during the
modeling phase. In the QUASIMODO Chess case study, we sperdasenonths to analyze a
Uppaal model of the gMAC clock synchronization algorithnt 8idl not find any flaw [6]. Only
after we decided to invest in a more accurate modeling of ldparishm, we quickly discovered
a flaw in the current implementation [8].

In the next section we identify seven criteria which we thingood model should satisfy.
We think that systematically checking and documentingdtegeria will help to structure the
modeling process, and will lead to better models. Sectiors@udses in more detail some of
the QUASIMODO case studies and the lessons we learned frem tloncerning the modelling
process.

ICT-FP7-STREP-214755/ QUASIMODO Page 4 of 10 Public

2 Whatis a Good Model?

To some extent, building good models is an art. Dijkstra’stmtBeauty is our business” applies
to models as well as to programs. Nevertheless, we can sega sriteria for good models.
These criteria are in some sense obvious, and any persoexpérience in modelling will often
try to adhere to them. But surprisingly our list of criteriashato the best of our knowledge -
not been described elsewhere in the literature, althougdt ofdhem occur in a technical report
of Mader, Wupper and Boon [#].Often, the criteria are hard to meet and typically several of
them are conflicting. In practice, a good model is often on&lwhonstitutes the best possible
compromise, given the current state-of-the-art of tootsniedelling and analysis. But a truly
beautiful model meets all the criteria! We refer to [7] forther links to related work in the areas
of software engineering, requirements analysis, and desig

1. A good model has a clearly specifietiject of modelling, that is, it is clear what thing
the model describes. The object of modelling can be (a paramfexisting artefact or
physical system, but it may also be a document that infognsglécifies a system or class
of systems (for instance a protocol standard), and it mag beea collection of ideas of a
design team about a system they construct, expressed anallgr by some drawings on a
whiteboard.

2. A good model has a clearly specifipdrpose and (ideally) contributes to the realiza-
tion of that purpose. Possible purposes include: commtioichetween stake holders,
verification of specific properties (safety, liveness, tigji.), analysis and design space ex-
ploration, code generation, and test generation. A modebealescriptive or prescriptive.
If a model has to serve several distinct purposes then dfteeétter to construct multiple
models rather than one.

3. A good model idraceable each structural element of a model either (1) correspamds t
an aspect of the object of modelling, or (2) encodes somedihgdbmain knowledge, or
(3) encodes some additional assumption. Additional assangpare for instance required
when a protocol standard is incomplete (e.g., it does nati§pbow to handle certain
events in certain cases). Links between the structuralexiésof the model and the aspects
of the object of modelling should be clearly documented. #tidction must always be
made between properties of (a component of) a model and assmsabout the behavior
of its environment.

4. A good model igruthful : relevant properties of the model should also carry ovenodd
for) the object of modelling. Typically, for each (relevabehavior of the object of mod-
elling there should be a corresponding behavior of the maahel/or for each behavior of
the model there should be a corresponding behavior of tieéaatt In the construction of
models often idealizations or simplifications are necgssasrder to allow for the use of a
certain modeling formalism or in order to be able to analymerhodel. In these cases, the

We see this as a clear indication of the lack of interest femtiethodology of modeling in our field.

ICT-FP7-STREP-214755 / QUASIMODO Page 5 of 10 Public

model may not be entirely truthful. The modeller should als/be explicit about such ide-
alizations/simplifications, and have an argument why tloperties of the idealized model
still say something about the artefact. In the case of gtadiveé models this argument will
typically involve some error margin. In the case of nondatarstic models it frequently
occurs that a model “overapproximates” reality, and theteo@ behaviors that are possible
in the model are not possible for the artefact.

5. A good model issimple (but not too simple). Occam’s razor is a principle particlyla
relevant to modelling: among models with roughly equal prce power, the simplest
one is the most desirable. Hence, the number of states atedvsti@ables should be as
small as possible, and the level of atomicity of transitishsuld be as coarse grained
as possible (but not coarser), i.e., the number of tramsitghould be minimal given the
intended use of the model. Preferably, things should beesridnly once, and one should
avoid ugly encodings. Preferably, the model uses stabliéde@ned and well-understood
concepts and semantics.

6. A good model i:xtensible and reusablethat is, it has been designed to evolve and be
used beyond its original purpose. Typically, if one definegleis in a modular and para-
metric way this allows for dimensioning, future extensi@amsl modifications, especially
if modules have well-defined interfaces. Ideally, a modeldth not just describe the spe-
cific system at hand: by appropriate instantiation and dsiwenng it should be possible
to model a whole class of similar systems.

7. A good model has been designed and encodethferoperability and sharing of se-
mantics. Model-driven development of an embedded systpmaly leads to a plethora
of models, all presenting different views on and abstrastiof the system. If a model
is not somehow linked to other models, its usefulness williinéed. Ideally therefore,
the relationships between all models should be properiyndéfifor instance via formal
refinement relations.

Clearly, there are many relationships and dependenciesbatthe criteria. If a model is trace-
ble, that is, links between the structural elements of thdehand the aspects of the object of
modelling are clearly documented, then chances increaseéh@ model will be thrutful. Also,
if a model has been set up in a modular way, then one may applydeeéand-conquer strategy
both for establishing truthfulness of the model and for gsial Etc, etc.

We think that the above criteria may help engineers to caosgood models: just by sys-
tematically checking and documenting that all criteriaraet, and by understanding and docu-
menting the various tradeoffs during the modeling phasegttality of models will significantly
increase. We also think that our criteria may help to defineaalmap for research: our cur-
rent tools and techniques often simply do not allow engsméeibuild good models (e.g., due
to state space explosion a verification purpose cannot hewvach the syntax is not sufficiently
expressive to allow for simple models, and it is not posdibleslate models).

ICT-FP7-STREP-214755 / QUASIMODO Page 6 of 10 Public

3 Case Studies

Within the QUASIMODO project, we paid special attentiontie modelling process in a number
of case studies, that we will discuss below.

3.1 Zeroconf Case Study

Participants Jasper Berendsen and Frits Vaandrager (RU), together witArBi@ebremichael
and Miaomiao Zhang.

Results The model checker Uppaal is used to formally model and aegharts of Zeroconf,
a protocol for dynamic configuration of IPv4 link-local addses that has been defined in RFC
3927 of the IETF. Our goal has been to construct a model thas (easy to understand by
engineers, (b) comes as close as possible to the informafftexeach transition in the model
there should be a corresponding piece of text in the RFC), gmddyg serve as a basis for formal
verification. Our modeling efforts revealed several erforat least ambiguities) in the RFC that
no one else spotted before. We present two proofs of the restalusion property for Zeroconf
(for an arbitrary number of hosts and IP addresses): a maopeational proof, and a proof that
combines model checking with the application of a new abstma relation that is compositional
with respect to committed locations. The model checkindplem has been solved using Uppaal
and the abstractions have been checked by hand. [2]

Lessons learned Within this case study, we looked specifically at the issdesaceability and
faithfullness of the model. The most important lesson thati@arned is that this pays off: six
flaws/ambiguities were discovered that were overlookedhbytotocol designers who wrote the
RFC, and by us in our earlier modelling efforts.

If one constructs a model that is traceable and faithful thigen it will be too detailled for
direct verification using a model checker. We deviced a cattjpnal abstraction technique for
transforming the original model in a more abstract tragtabbdel. We proved correctness of the
abstraction by hand. Clearly, there is a great need for mexte support of these abstractions
in Uppaal. Currently, Uppaal also lacks a clear notion of congmt/module.

3.2 Chess Case Study
Participants Faranak Heidarian, Frits Vaandrager, Mathijs Schuts, amjZhu (RU)

Results We present a detailled timed automata model of the clocklspmization algorithm
that is currently being used in a wireless sensor network (\B&t has been developed by the
Dutch company Chess. Using the Uppaal model checker, welisktdlhat in certain cases a
static, fully synchronized network may eventually becomeynchronized if the current algo-
rithm is used, even in a setting with infenitesimal clocKtdri[8]

ICT-FP7-STREP-214755 / QUASIMODO Page 7 of 10 Public

Lessons learned Model checking projects are often carried out a postertbg:artefact exists
and has been documented in some manual of protocol startaetlvantage of such projects is
that the object of modelling is clear. A disadvantage mayhbéthe potential impact of the work
is limited. The Chess case study is an example of a situatishich timed automata technology
is applied during the design of a new system, and may actiumpct this design. In such case
studies, the object of modelling (a prototype, or just idethe engineers) is a moving target,
which changes every week or sometimes every day. In ordeedp kip with the design team,
it is essential to have frequent meetings between the modetethe designers. Preferably, the
modeler should be part of the design team and work at the sazagdn. Our mistake was that
we were too late in realizing this. As a consequence, ourUipgtaal model of the protocol [6]
was not faithful. Interestingly, since the actual impletagion may become unsynchronized,
the solution proposed in [6] may be of practical interesth@igh certainly some changes are
required).

3.3 Oc case study

Participants Georgeta Igna, Frits Vaandrager, Israa AlAttili, Fred HempSteffen Michels,
Feng Zhu (RU), Jacob lllum and Kim Larsen (AAU)

Results The data path of a printer/copier encompasses the comg@#ti®pthe image data (the
bit stream) from source (for example the network) to tartfes {maging unit). In order to reach
Océ’s objective of genuine system adaptability, also the dath has to be adaptive because its
properties heavily influence the image quality of the endlpod as well as system behavior as-
pects that have an eminent effect on usability. At run-tifm@nges in the environment (or in the
observed image quality, using a feedback mechanism) magdtance require the use of differ-
ent algorithms in the data path, deadlines for completiozoofiputations may change, new jobs
may suddenly arrive, and resource availability may chaigeealize this type of behavior in a
predictable way is a major challenge. Currently it is alremayossible to quickly evaluate cost,
energy, performance aspects of various data path implati@msolutions at design-time. This
does not only hold for changing, adaptive functionalityeésed by load, content, print quality),
but even for a given fixed functionality. Partner ESI/RU wailved in a project (named Octopus)
with Océ in which Uppaal is used to make detailled models of the daiteqf printer/copiers and
to analyze their behavior. Due to their complexity, theselet® provide an excellent challenge
for the new analysis and synthesis techniques that are dewajoped within Quasimodo.

Georgeta Igna spent a lot of time at&to construct - in close interaction with the designers
- detailled Uppaal models of a new machine that is currergindp developed, and to use these
models for design space exploration. A publication degagilthese results is currently being
reviewed at Oe and will be submitted shortly.

In [1], we applied Uppaal Tiga to automatically compute d@d@scheduling strategies for a
simplified version of the model. As far as we know, this is tigt fapplication of timed automata
technology to an industrial scheduling problem with uraiety in job arrivals.

ICT-FP7-STREP-214755 / QUASIMODO Page 8 of 10 Public

Lessons learned In principle, Uppaal is able to faithfully model the datapatf realistic printer
designs. State space explosion is clearly an issue, butecle under control by also including
(some of) the scheduling rules used byeé@dthin the model. One technical issue that we faced is
that although essentially the behavior of the model is fdéyerministic when all the scheduling
rules are added, the resulting Uppaal model is not (andrsuifem state space explosion) due
to interleavings of internal actions of the various compuse We resolved this by using the
channel and process priorities from Uppaal, but a bettettisol would be to extend Uppaal with
support for confluence detection and/or partial order rednc

A lesson we learned is that it is extremely difficult to mainteorrectness of the model in a
setting where the object of modelling has such a high conitylekhere is not a single document
describing the design. In fact there is not a single persomiwhble to answer all the questions
that need to be answered in order to obtain a good model: thelkdge is spread over a large
design team. For the engineers ateQicis difficult to understand the intricacies of the Uppaal
model. The syntax of Uppaal is not sufficiently expressivddscribe the design in such a way
that a small change in the design corresponds to a small ehantpe model. Due to these
difficulties, we decided to develop a high level languagedtescribing the designs, together with
a translation to Uppaal: one the one hand this will make itmegsier to communicate with the
engineers, and on the other hand it will reduce the chancegrofiucing errors in the Uppaal
model.

3.4 Scooter case study
Participants Jiansheng Xing (UT)

Results Chessway has designed and realized successfully its firstaf@n of a self balancing
scooter. However, there still exist many problems to beesbfor improving the scooter. For
the next generation, the most important challenges candssitied into two categories: 1. the
design should include formally defined system states suamthstifety measurement and power
management is easier to be implemented. 2. Verificationeoptbposed solution during design
phase and generation of code and test cases from the verdsgnd Confronted with such
challenges, formal method are a promising approach to conaecbrrect solution. UPPAAL,
being a popular model checking tool, is our first choice.

Using UPPAAL, we have formally defined system states such asdiity, PowerDown,
Hibernate, Checking, and Drive. Also, we have introduceétgadignals such as warning and
unsafe into this model. With these states and signals, weeydly that the system satisfy some
safety properties or functional specifications. For exaywe know that the battery will not be
over-consumed; if we know the energy consumption, the neimgirunning time of the scooter
can be calculated. Next, we anticipate power managemeidypodn be included such that
performance of different policies can be analyzed and coegpbaAnd at the same time, we are
working on the generation of code and test cases from théagmodel.

In the modeling of scooter system, some techniques haveibgeduced to improve or sim-
ply the modeling process. The interaction of scooter witr iss abstracted and implemented as

ICT-FP7-STREP-214755 / QUASIMODO Page 9 of 10 Public

a timed automaton. This abstraction is very powerful asrit wedel all kinds of inputs from
user and it greatly simplifies the modeling process. Thibr&pie applies to simple interac-
tions where the user has few statuses and it can be seen asastegeneration engine for the
model itself. Unsafe timed automaton introduces a teclenfqunondeterministic triggering of
failure signals which makes the modeling more succinct.s Technique can be enhanced by
introducing an urgent channel which guarantees that tiggdring of signals will occur. For
the implementation of distributed control, the channels wetated status variables are declared
parameters of the scooter model, and then we can easilyhgp&oior more distributed scooter
controllers using this model. Obviously, one controlldtiag is much simpler to be created and
then easily extended to more complicated distributed eggtins. This template feature is sup-
ported by UPPAAL and is fully utilized here for the simpliftean of the modeling process. With
this UPPAAL model, we can analyze the timing performanceaifdry usage by labeling all
non-energy-consuming status with urgent. This abstnacim also be generalized such that we
can analyze a specific performance measure (energy usagsjdilishing a linear relationship
with time. With this technique, we can analyze a specific mesawith a simple model rather
than a more complicated model (for instance a UPPAAL Cora hode

Lessons Learned This case study nicely illustrates the power of nondeteisnirin modeling.
Nondeterminism (as supported by Uppaal) allows one to dsefinele, abstract models of sys-
tems. The behavior of the system is in a sense “overapproediiebut this is ok as long as the
purpose of the model is to establish safety properties.

4 Future Work

Our plan is to our seven criteria in detail for each of the casdies that will be presented in the
QUASIMODO handbook.

Bibliography

[1] I. AlAttili, F. Houben, G. Igna, S. Michels, F. Zhu, andW. Vaandrager. Adaptive schedul-
ing of data paths using Uppaal Tiga. In S. Andova et.al, editmceedings First Workshop
on Quantitative Formal Methods: Theory and Application$-{009), volume 13 ofElec-
tronic Proceedings in Theoretical Computer Sciermuages 1-12, 20009.

[2] J. Berendsen, B. Gebremichael, F. W. Vaandrager, and Mh@hBormal specification and
analysis of zeroconf using uppaaACM Transactions on Embedded Computing Systems
2010. To appear.

[3] E. Brinksma and A. Mader. On verification modelling of erdded systems. Technical
Report TR-CTIT-04-03, Centre for Telematics and Informatiochfelogy, Univ. of Twente,
The Netherlands, January 2004.

ICT-FP7-STREP-214755 / QUASIMODO Page 10 of 10 Public

[4] S. Cheshire, B. Aboba, and E. Guttman. Dynamic configunatfdPv4 link-local addresses
(RFC 3927), May 2005ht t p: / / www. i et f.org/rfc/rfc3927.txt.

[5] P. Eykhoff. System Identification: Parameter and State Estimatibdiley & Sons, 1974.

[6] F. Heidarian, J. Schmaltz, and F. W. Vaandrager. Analg$ia clock synchronization pro-
tocol for wireless sensor networks. In A. Cavalcanti and DmBaeditors,Proceedings
16th International Symposium of Formal Methods (FM2009dBoven, the Netherlands,
November 2-6, 20Q90lume 5850 ol ecture Notes in Computer Sciengages 516-531.
Springer, 2009.

[7] A. Mader, H. Wupper, and M. Boon. The construction of vedtion models for embedded
systems. Technical Report TR-CTIT-07-02, Centre for Teleraatind Information Technol-
ogy, University of Twente, The Netherlands, 2007.

[8] M. Schuts, F. Zhu, F. Heidarian, and F. W. Vaandrager. #&flath clock synchronization
in the Chess gMAC WSN protocol. In S. Andova et.al, ediiengceedings Workshop on
Quantitative Formal Methods: Theory and Applications (QB8), volume 13 ofElectronic
Proceedings in Theoretical Computer Scignuages 41-54, 2009.

10

