

FP7-ICT-STREP 214755 /

QUASIMODO

27/01/2009

Page 1 of 27

Project no.: FP7-ICT-STREP-214755

Project full title: Quantitative System Properties in Model-Driven Design

Project Acronym: QUASIMODO

Deliverable no.: D 5.2

Title of the deliverable: Preliminary descriptions of case studies

Contractual Date of Delivery to the CEC: Month 6
Actual Date of Delivery to the CEC: Month 12 (February 1, 2009)

Organisation name of lead contractor for this deliverable: Saarland University

Author(s): Holger Hermanns, Poul Hougaard, Teun van Kuppeveld, Kai Sven Mittermüller, Jan
Storbank Pedersen, Marcel Verhoef, Ivo van Vessem

Participants(s): P05 SU, P07 TERMA, P08 CHESS, P10 HYDAC

Work package contributing to the deliverable: WP5

Nature: R

Version: 2.0

Total number of pages: 27

Start date of project: 1st January 2008 Duration: 36 month

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

Dissemination Level
PU Public X
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)
Abstract:

This deliverable provides an overview on the case studies pursued in the context of Quasimodo.

Page 2 of 27
 FP7-ICT-STREP-214755 / QUASIMODO Publicl

Table of Contents
1 INTRODUCTION ... 3

2 HYDAC: ACCUMULATOR CHARGE CONTROLLER.. 4

2.1 STATE OF THE ART ... 5
2.2 IMPROVED DESIGN ... 6
2.3 DESCRIPTION OF THE ACC-ALGORITHM... 7
2.4 RESEARCH QUESTIONS .. 9

3 CHESS: SELF-BALANCING SCOOTER ... 9

3.1 DYNAMIC MODEL... 10
3.1.1 Electronics ... 11
3.1.2 Integration ... 12

3.2 CHALLENGES ... 12
3.2.1 Energy efficiency ... 12
3.2.2 Safety ... 13

3.3 RESEARCH QUESTIONS .. 14

4 CHESS: WIRELESS SENSING .. 14

4.1 DESIGN PHILOSOPHY AND INSPIRATION .. 14
4.2 CONTEXT ... 14
4.3 CONSTRAINTS .. 15
4.4 DESIGN CHOICES.. 15
4.5 RESEARCH QUESTIONS... 15
4.6 DEFINITIONS AND TERMINOLOGY ... 16
4.7 TDMA SCHEDULING.. 16

4.7.1 Message format ... 18
4.7.2 Implementation issues.. 18

4.8 CLOCK SYNCHRONISATION.. 19
4.9 IMPLEMENTATION ISSUES .. 20

5 TERMA: HERSCHEL/PLANCK SOFTWARE.. 21

5.1 ACC ASW ARCHITECTURE ... 22
5.2 ACC ASW PROCESS STRUCTURE.. 24
5.3 FDIR APPROACH ... 26
5.4 RESEARCH QUESTIONS .. 27

Page 3 of 27
 FP7-ICT-STREP-214755 / QUASIMODO Publicl

1 Introduction

The Quasimodo project plans to carry out a series of challenging case studies, provided by our
industrial partners in which related families of models are used for (quantitative) analysis, code
generation and test generation. In order to demonstrate and challenge the usefulness of our methods
and tools, and assess their strengths and weaknesses, it is important to apply them on realistic
problems. Therefore we have selected case studies that are very close in spirit to products that are
currently under development by our industrial partners. Our expectation is that this is highly
motivating both for the academic and industrial partners.

This deliverable provides preliminary descriptions of the case studies we plan to cover. These are

• HYDAC: Accumulator-Charge Controller

• CHESS: Self-balancing scooter

• CHESS: Wireless Sensing

• TERMA: Herschel/Planck

Page 4 of 27
 FP7-ICT-STREP-214755 / QUASIMODO Publicl

2 HYDAC: Accumulator Charge Controller

This case study is based on a product which has been developed by HYDAC, but is not yet
available on the market. The problems and tasks described here for this concrete product are also
easy transferable to other products, so the HYDAC has a great interest in the knowledge transfer
provided by this EU-project. The product is an accumulator-charge controller (ACC) which
optimizes the energy and the wear of the used components, especially the pump.

Figure 1: Screenshot from the program which simulates the ACC

• A hydraulic system has 4 basic components (Figure 1):
• Reservoir: The tank contains the oil which is used by the system.
• Pump: The pump pumps the oil from the tank to the hydro-pneumatic accumulator which

stores the pressure.
• Machine: The machine operates in cycles from 10s to 5min. In each cycle the machine needs

a characteristic amount of pressure and oil. This amount includes several consumers, like
e.g. cylinder.

• Hydro-pneumatic accumulator: Fluids are practically impossible to compress and can
therefore not store any pressure energy. In hydro-pneumatic accumulators, the
compressibility of a gas is used to store fluid. The gas is in the most cases nitrogen. The
accumulators consist of part fluid and gas with a bladder or diaphragm as separating element
(see Figure 2, 3). Only the fluid chamber is connected to the hydraulic circuit. When the
fluid pressure rises, the gas is compressed, when pressure falls, the compressed gas expands
and forces the accumulated fluid to flow into the cycle.

Page 5 of 27
 FP7-ICT-STREP-214755 / QUASIMODO Publicl

Figure 2: diaphragm accumulator

Figure 3: bladder accumulator

(1) The accumulator is pre-charged with nitrogen.
(2) The accumulator is charged with the minimum pressure for operating.
(3) The accumulator is maximal filled with oil. The maximum pressure is reached.

The interesting value of the accumulator is the volume of oil stored, because the accumulator is so
dimensioned that the required pressure can always be provided. It is obviously, that the volume of
the oil is Voil = Vaccumulator – Vgas. In the following, we will always talk from the volume of the gas,
because this volume can be calculated by the gas equation:

 P * V = const. *T
 P=pressure, V=volume, T=temperature

The problem by the gas equation is, that in the system because of physical restrictions (high
pressure and very fast changes) and costs, only the pressure can be measured.
There are two main simplifies of the gas equation:

1) Isotherm: T = const. => P * V = const.
2) Adiabatic: P * Vx = const. x = adiabatic exponent (depends on many factors)

In most cases, the changes of state tend to follow adiabatic rather than the isothermal laws. It is
often the case that the charge takes place isothermally and the discharge adiabatically. In practice a
good approach is P * V1.3. We’ll using this approach for our ACC too.

2.1 State of the art

The ACC refills the accumulator by two pressure points P1 and P2 in which the pump get started
and stopped.

Page 6 of 27
 FP7-ICT-STREP-214755 / QUASIMODO Publicl

This design is very simple, but not optimal. The pump control is independent from the consum of
the machine, so there must be always reserves for the worst case consumptions. This yields to a
high wear and energy usage.

2.2 Improved design

The main goal for the new ACC is to reduce the pressure in the accumulator by refilling it
intelligent. This yields to less energy use (in average ~40%) and because of lower pressure to less
wear by the pump and the bladder/diaphragm. For further improvement of the pump wear we take
care of minimum run- and downtime of the pump, given as parameter in the ACC.

First the ACC run a cycle with two-point controller like described above and measure the pressure
and the time the pump is running (~ all 10 ms, depending on the duration of the cycle with a
precision of 12bit). The energy needed, which should be optimized, is defined as

The consumer of the machine will be identified by calculate

This leads to a curve, that looks like the following (with some kind of smoothing),

pressurechargepreP0and

ttimeatpressuremeasured)(,0)(

−=

=−= ∫ tPwheredtPtPE

⎪
⎩

⎪
⎨

⎧
=

=

′−=

stoppedispump

runningispump
tPuSt

equationgasthewithtPfromcalculatedtV
pumppowertPuSttVtC

,0

,1
)(

)()(
)*)()(()(

Page 7 of 27
 FP7-ICT-STREP-214755 / QUASIMODO Publicl

 needed
 oil

 time

which defines the characteristic consumption of the machine. The consumption is different from
machine to machine.
Based on this consumption, which is provided from C(t), the new “intelligent” time-points for
switching the pump are calculated.

2.3 Description of the ACC-Algorithm

As described before, the ACC stores the pressure and the pump state during the cycle. On the fly it
is possible to calculate the volume curve without pump from this values. Now we want to have a
look at the optimization algorithm. The algorithm is designed to be very fast does not use dynamic
programming.

Figure 4: sequence of optimization

Page 8 of 27
 FP7-ICT-STREP-214755 / QUASIMODO Publicl

FilterValues: The consumption curve is the derivation of the the volume curve without pump.
Hence through derivation the noise and the artifacts of the discretization increase, the noise has to
be removed before derivation. This is done by calculating the average of 10 values.
After that we calculate the derivation = consum and get e.g:

SearchAreas: Now we try to identify every single consumers. That means we want to identify the
intervals where a consumer is active. So we get something like the lower picture . The borders of
the areas are marked by the red lines. For each area we calculate the average consumption. After

this step, we don’t need the curve any longer, but only work with the area intervals and the
corresponding average consumption.

CalcPumpIntervals: In this step we transform the areas with the average consumption to the
corresponding pump-runtimes. That means, how long the pump has to run to balance the consum.
Hence after this step we only have areas of pump runtime. Please remark, that it is possible that the
intersection of two intervals is not empty.

EliminatePeaks: Now we remove very short pump runtimes,which are created through small areas
or areas with no consumer, and part of runtimes outside the cycle. The pump runtime of this areas
will be added to the previous area.

FitPumpSPsToOptMinPressure:
After a cycle with 2-point-controller the pressure can be much higher or lower, than it would be
necessary for an optimal cycle. So in this function we increase or decrease the first pump runtime
intervals, such that the pressure reaches an optimal value.

CalcMinPumpStoptime:
Adjust the pump runtimes, to hold the minimum pump runtime.

CalcMinPumpRuntime:
Adjust the pump runtimes, to hold the minimum pump stoptime.

Page 9 of 27
 FP7-ICT-STREP-214755 / QUASIMODO Publicl

2.4 Research Questions

The following questions are supposed to guide modelling and analysis of this case within
Quasimodo.

• Is our controller safe in the sense that the pressure is always in a safe region?

• Is the controller optimal under the limitations of runtime and downtime of the pump?

• Is the controller robust to fluctuations in the cycles?

• How much does the improved solution differ from the optimal one, as a consequence of the
simplifications we have made?

- adiabatic gas equation

- constant pump-power (in real depends on the pressure)

- long-run drift of the systems characteristics e.g through leakage.

3 CHESS: Self-balancing scooter

This section describes a project where motion control is an essential part and where problems can
arise due to improper software design. Improper design is for example a result of the
misunderstanding due to different views between the engineering disciplines involved.

This case study is proposed by Chess and has already been used to
validate formal development approaches. It is the so-called self-
balancing scooter, displayed in the figure on the right. The self-
balancing scooter is chosen because it is a meta-stable system with
interesting control challenges. It exposes design problems in all
engineering disciplines involved: mechanics, electronics and
software development. An inappropriate development method
would easily result in a non-functional or badly performing system.
During this case study, the model driven development approach is
tested with the use of the trajectory. A dynamic model of the self-
balancing scooter is introduced which gave the opportunity to
develop and verify controllers and test the properties of the
electronics even before the hardware was available. In parallel with
the development of the model and control laws, the hardware of the
system is developed. The hardware is developed with the use of
commercial of the shelf (COTS) products, based on FPGA
technology and the physical model is developed in the 20-sim tool.

Page 10 of 27
 FP7-ICT-STREP-214755 / QUASIMODO Publicl

3.1 Dynamic model

As previously stated, a dynamic model of the system is developed during the project and extended
to provide correct information during each different development stage. In line with the method a
first model of the physical system is made. The system is divided into two rigid bodies which are
represented with the use of bondgraphs, see the figure below.

Verification is done with common understanding about the dynamics of the application. For
example, a self-balancing scooter will fall down when a small deviation from upright position is the
initial condition. The verification is done with the use of a representation with graphs and a 3D
animation.

The control law design will be done with a linearized representation of the dynamic model. With
the linearized model the poles and zeros are plotted. The pole and zero plot gives information about
stability and control possibilities of the system. During the design of the control laws various design
choices are investigated, for example which sensors need to be used. We have investigated the use
of a gyroscope and an accelerometer. Verification is done with a model with a deviation of the
upright position which returned to the upright position and a model with a simulated centre of mass
movement which showed a forward movement of the self-balancing scooter. Simulations showed a
better stability with the use of a gyroscope.

Implementation of the embedded system properties gives a discrete model. A discrete model
requires a redesign and recalculation of the control law properties since the discretization introduces
phenomena that are due to discrete sampling. Verification of this model is done with the initial
condition and forward movement test also used with the control law step. When the verification
results are satisfying the software code can be generated from the model.

Next step is the realization with the integration of the various disciplines into a working system.

Page 11 of 27
 FP7-ICT-STREP-214755 / QUASIMODO Publicl

3.1.1 Electronics
For the development of the electronics the following high-level system architecture is used.

H-bridge Sensors

Brushless DC
 motor

FPGA Board

A
cc

el
er

om
et

er

G
yr

o

PWM

PWM

PWM = pulse width modulation

Position
rotor

Position
rotor

Angle

The H-bridge transforms the PWM from the FPGA to the correct power level for the motor. It is
basically a clever signal amplifier. The position of the motor is measured with the use of van Hall
sensors. With the use of these sensors the motor can be controlled correctly, but it has a low
resolution. The accelerometer and gyro are used to measure the upright position of the self-
balancing scooter. At this moment the accelerometer is used for correcting the drift of the gyro. The
last block is the FPGA board, on which the software will be executed.

The choice during the design was the use of an FPGA (Field Programmable Gate Array) to control
the system. With the use of an FPGA great opportunities arise in the form of flexibility in the design
and in reuse of standard intellectual property (IP) blocks. Besides the IP for the FPGA the designed
controller board should also be made with several possible additions in mind. For the design of the
prototype electronics commercial off the shelf development boards were used to reduce design time
and costs. With these choices a hardware platform was developed which can be used in different
applications.

NIOS II
CPU

(Control)

Hall sensor Hall
decoder

PWM
calculation

Power
driver

Interface
Gyro

Accelerometer

FPGA
VHDL

As previously noted the FPGA board is used to execute the software. Software can be executed
after the creation of a VHDL (VHSIC hardware description language) platform. An overview of
this platform is given above. In the figure it is shown that the platform consists of a VHDL part and

Page 12 of 27
 FP7-ICT-STREP-214755 / QUASIMODO Publicl

a soft core called NIOS II (the processor). Besides the FPGA description the inputs and outputs are
displayed in the figure. With the use of the NIOS II core it is possible to execute ANSI C-code and
with the use of the VHDL blocks it is able to interface to the hardware.

3.1.2 Integration
With the completion of each different discipline integration can take place. After integration the
application was tested and validated with respect to the requirements. With the resulting system it is
possible to move forward and backward and stand in upright position on it.

3.2 Challenges

During the project a few challenges were encountered, without the possibility to use a method to
solve them. A new approach is needed to tackle these challenges. The introduction of a new
methodology could result in the reduction of the parameters/functions that need to be defined by
trial and error or by previous experience. This reduction will prevent the extensive risk on design
time and costs due to unknown design issues. Key issues are energy efficiency and safety.

3.2.1 Energy efficiency
The motion control solutions developed by Chess are used in mobile systems. The mobile character
requires more effort on the design of the system. For mechanics and electronics this can be seen in
the use of light weight materials, the development of more efficient motors and the use of low
power electronics. Besides the mechanics and the electronics the software could also contribute to a
more efficient system.

Higher energy efficiency can be realized for example by a lower execution frequency of software or
a better software management of peripherals use. The management of peripherals use can be done
with the use of formally defined system states. As previously described, the system state definition
is dependent on the choice of the software architect or engineer. With the introduction of a formal
method for the definition of the system states a better result is possible. Besides the definition of the
system states a correct definition of the transition conditions is needed.

During the test case of the self-balancing scooter a good definition of the system states was missing.
This resulted in lower energy efficiency and less structure in the system states. A redesign is
needed, this time with a definition of the systems states. A first definition is displayed in the figure
below and a more detailed description is given in the table. The dotted lines in the figure are
transitions that may also be needed.

The challenge for the Quasimodo project is to come with a formal definition of the system states
and the needed transition conditions. This results in a correct working system with better energy
efficiency. Management of peripherals use within the system states requires attention to the
interaction between the user and the resulting solution. A perfect solution will result in better energy
efficiency without the user noticing any difference. For example switching off unused peripherals
requires a very fast wake-up procedure or the use of extra sensors.

Page 13 of 27
 FP7-ICT-STREP-214755 / QUASIMODO Publicl

Running

Sleep

Hibernate

Power down

Switch No person on the self-
balancing scooter

Time-out

(Charging)

Component versus
Operating mode

Running Sleep Hibernate Power down

FPGA ON ON OFF OFF
CLK FPGA ON OFF OFF OFF
RAM ON ON OFF OFF
External IO ON ON OFF OFF
Motor ON ON OFF OFF
Battery Monitor ON ON ON ON
Power management
control

ON ON ON OFF

Motor safety switch ON OFF OFF OFF

For the definition of the transition conditions information of the self-balancing scooter may be
needed, sensor information that is needed can be defined. With the current implementation, not all
information may be available, however this can be implemented.

3.2.2 Safety
Motion controllers that are used in products where close interaction with humans is involved require extra
safety criteria. Improving the safety of the system is possible by creating redundancy of the used
components. Redundancy guarantees the correct working of a system with the use of multiple components
for the same function. Besides the redundancy, software can also improve the safety of the system. With a
correct definition of the system states and transitions it becomes possible to create a safer system. Besides
transition conditions a definition of the failure classifications needs to be made. The failure can be classified
with fatal, error and warning. Each failure will have a result, fatal could be system halt and warning could be
a flashing light. This classification can be used for the concepts graceful degradation and fail-safe
termination. Graceful degradation can be used when an exception is detected and a part of the system is still
able to operate. Fail-safe termination makes sure that the system stops in an appropriate way without causing
a dangerous situation.

• Exceptions in a motion system which can have an influence on the safety are for example:

• Signal out of range (motor current, angle).

• Battery conditions (overheated, low, empty).

• Malfunctioning components, electrical or mechanical.

• Exceptions in software.

For a correct definition of the states and the transition conditions the exceptions of the system need to be
considered.

Page 14 of 27
 FP7-ICT-STREP-214755 / QUASIMODO Publicl

With the design of a self-balancing scooter safety measures are also needed. Without the correct safety
measures the person using the product could easily get hurt. For example when an exception is detected in
the software and an error state is activated this could lead to a definite shutdown of the system. When the
system is in use and the controller stops due to an exception this could lead to dangerous situations. A good
definition of transitions and states is needed. Previously proposed solutions resulted in an exploded number
of system states and transition conditions, without the possibility of verification.

The challenge for the Quasimodo project is to come with a formal definition of system states and transition
conditions providing graceful degradation and fail-safe termination.

3.3 Research Questions
The definition of system states and state transitions forms a great risk in the development of a mechatronic
control system. The use of a method and tools possibly reduces this risk. The tools and methods need to
support the development of a verifiable system state model, which results in the optimum solution. Besides
the verification of the system states the model can also be used as an input for a code generation mechanism.
Code generation can be used for the reduction of development time. A model can also be used for the
definition or generation of the test specifications.

• Prepare a model to investigate the system behavior.

• Evaluate the behavior for all state transitions.

• Find optimal behavior: Safe and user friendly.

• Generate code from the model.

• Generate test cases from the model.

4 CHESS: Wireless Sensing
Wireless Sensor Networks are envisaged to consist of thousands of autonomous sensor nodes. Sensors
communicate wirelessly with neighboring sensors thus forming a sensor network.
Sensors rely on these neighbours to forward their messages such that these messages eventually
reach their destination where they can be processed. In this scenario the financial budget per sensor
is severely limited, which translates to a limited amount of chip area and a low capacity energy
supply. This in turn puts tight restrictions on the amount of available storage, the affordable
computational complexity, the amount of data that can be transmitted, and the transmission range.
Medium access control protocols for such networks are in the focus if this case study.

4.1 Design philosophy and inspiration

For several years Chess has researched and experimented with wireless sensor nodes using an
epidemic communication model. This approach is inspired by biological systems such as ant
colonies and social networking by humans. These systems demonstrate emergent behaviour where
the whole is more than the sum of parts. This approach is reflected in the design of the MAC
protocol with broadcast communication patterns, probabilistic and adaptive behaviour, redundancy,
self-organisation, and a specification that is limited to local interactions.

4.2 Context

The gMAC as defined in this document is one of three protocol layers that are currently
distinguished in the Chess Wireless Sensor Network. Atop the gMAC layer sits the Gossip layer

Page 15 of 27
 FP7-ICT-STREP-214755 / QUASIMODO Publicl

(see [Van Steen et al, Vrije Universiteit Amsterdam, Tech. Rep. IR-CS-012.05, 2005]) that is
responsible for insertion of new messages, forwarding of current messages and deletion of old
messages. The application layer, atop the Gossip layer, has the business logic that interprets
messages and, optionally, generates new messages. The characteristics of these other layers
influence the design decisions made in the gMAC layer. For instance, the highly redundant nature
of the Gossip layer allows us to tolerate occasional message loss on the MAC layer. A future release
of this document may include a specification of the Gossip layer.

4.3 Constraints

Our design space is constrained by specific hardware limitations and environment properties. These
include:

• Interference in the much used ISM frequency band (Microwave, Bluetooth, Wifi, etcetera).
• Clock inaccuracies.
• Absence of collision detection possibilities. This means if a node does not receive a message

in a particular period it can either be because no message was sent by any of the
neighbouring nodes (if any) or that a collision occurred due to overlapping transmissions by
neighbours or external interference.

• The topology of the network is unknown, sensors are arranged in a three dimensional space,
the density of the network varies spatiotemporally.

• The range from which a node can receive messages is not necessarily the same as the range
in which a node’s message can be received. Hence, the neighbour relation is not necessarily
symmetric.

4.4 Design choices

We list the design choices that have been made in the design of the Chess gMAC protocol outside
those that are directly determined by the hardware constraints listed in the previous section:

• In order to meet the strict energy constraints, we use a Time Division Multiple Access
(TDMA) MAC protocol. If we have some common notion of time, we can limit the period
nodes are active and switch to an energy saving mode for the remainder of the time.

• There is no topology establishment and no routing mechanism. Although these are not
services typically offered by the MAC layer, the fact that these services are also absent form
higher layers does influence the design of the gMAC.

• All communication is broadcast with no receiver designation and no MAC-level node
identifiers.

• There are no delivery guarantees on the MAC level and there is no investment in 2-way
communication with acknowledgement messages. We assume redundancy in higher layers
offers sufficiently high probability of message delivery. If there is interference within (a sub
region of) the communication range of a node, the message will not be delivered to any node
in that sub region.

4.5 Research questions

Currently the greatest challenge in the design of the gMAC protocol is to find suitable mechanisms
for

• TDMA scheduling and
• Clock (re)synchronisation

Page 16 of 27
 FP7-ICT-STREP-214755 / QUASIMODO Publicl

Refer to sections 4.7 and 4.8 respectively for a specification of these problems. To evaluate the
suitability of solutions we identify the following quality metrics:

• Resource consumption
o Energy
o Computational complexity
o Storage
o Bandwidth

• Latency: average time required to deliver a message to (all) its destinations
• Scalability: up to tens of thousands of nodes
• Robustness: tolerance to node and communication failure
• Mobility: nodes do not necessarily have a fixed location
• Adaptability: changing communication patterns and network density

Problem statement

Find a suitable solution for the above two challenges satisfying the constraints of section 4.3
offering a good trade-off between the quality metrics as defined above. If there are compelling
reasons to deviate from the design choices as described in section 4.4, the solution should provide
sufficient evidence that such deviation does not adversely affect the defined quality metrics.

4.6 Definitions and Terminology

Our TDMA MAC model is characterised as follows. Note that all references to time are based on
the local perception of time. Time is divided in fixed length frames, each frame is subdivided in
slots. S denotes the number of slots within one frame. A<S denotes the number of active slots, that
is the slots in which the node is either in listening mode for incoming messages from neighbouring
nodes, or is sending a message. D<S denotes the number of dormant slots, i.e. slots in which the
node is neither sending nor listening. The following relation holds: S=A+D . In a typical scenario
A<< D for reasons of energy conservation.

The active slots are placed in one contiguous sequence which, in the current implementation, is
placed at a fixed location at the beginning of the frame. Hence we have a sequence of slots
(s0,s1,…,sA - 1 ,sA,…,sS-1) such that

VA={si |0≤i<A} is the set of active slots and
VD={si |A≤i<S} is the set of dormant slots

4.7 TDMA scheduling

The TDMA schedule problem can now be stated as follows:

Determine for each time frame one slot st∈VA and one slot ss yn c∈VD . Slot st will be used to send a
message and slots VA\st will be used to listen for incoming messages from neighbouring nodes.
Slot ss yn c will be used to send a synchronisation message for nodes that are out of clock

Page 17 of 27
 FP7-ICT-STREP-214755 / QUASIMODO Publicl

synchronisation (for example nodes that have just joined the network). Refer to section 4.8 for a
description of the synchronisation mechanism.

The slot allocation strategy should maximise the expected number of neighbours to which a
message is successfully delivered. The slot allocation should also be fair. This means, for instance,
that for each node the expected number of neighbours to which its message is delivered is
"comparable" to that of nodes in a "comparable" situation (w.r.t. node density, amount of external
interference etc.).

If two neighbouring nodes choose the same send slot, a collision will occur in the intersection of
their ranges preventing message delivery of either node’s message in that intersection. Ideally, no
neighbouring pair would ever choose the same send slot. This has proven to be very hard to
achieve, especially if node mobility is taken into account.

It is important to note that the number of neighbours may exceed the number of active slots A . Such
a scenario might require nodes to be silent in some of their allocated send slots, as too many
collisions hampers all communication.

Example

To illustrate the scenarios the TDMA slot allocation should take into account we give the "Hidden
node problem" as an example. Consider three nodes in a linear arrangement such that the middle
node Y is within the range of both other nodes. The outer nodes X and Z are outside each others
range. This setup is visualised in the picture below.

If nodes X and Z were to choose the same send slot, their messages would collide in the intersection
of their ranges. Hence node Y will receive neither message and, in the absence of collision
detection, cannot distinguish this from the situation where no message was sent. Neither node X nor
Z can autonomously detect this conflicting slot allocation even if they would occasionally listen
instead of send in their allocated send slot. The traditional solution to this problem, as described in
[Bharghavan et al, “MACAW: a media access protocol for wireless LANs”, SIGCOMM’94, ACM,
p212-225], uses a 2-way communication in which the intended receiver (Y), on request of the
sender (X), sends a message announcing to all nodes (e.g. Z) within the range of the receiver the
forthcoming transmission. This solution is inappropriate for our scenario as all communication is
broadcast and we want to avoid the negotiation overhead. Instead we use a piggybacking solution
where each message includes the sender’s perspective on the current slot allocation. In the previous
example node Y would report the slot in which both X and Z send as a vacant slot from which X
and Z can conclude that a slot allocation conflict has occurred. See below for the specification of
the message format including the description of the slot allocation.

Page 18 of 27
 FP7-ICT-STREP-214755 / QUASIMODO Publicl

4.7.1 Message format
MAC messages are defined as the sequence (ID, n, T, P, MDC(ID,n,T,P)) where
• ID is a domain identification string which allows to disregard messages from a different

administrative domain.
• n denotes the slot sequence number (from the sender's perspective) in which the message was

sent.
• T is the sender's perspective on the current slot allocation. T is defined as the sequence

(b0,b1,…,bA-1) such that bi∈{true, false} for 0≤i<A. bi=true implies that from the sender's
perspective slot i is occupied, either because it is the sender's send slot or because the sender has
received a message in slot i. bi=false implies that form the sender's perspective slot i is vacant.
Recall that in case of a collision in slot i, the sender also considers it vacant.

• P is the fixed length MAC payload message.
• MDC is a Modification Detection Code parameterised by the preceding elements.

In our current implementation the byte sizes of these elements are as follows:

ID 3
n 2
T 1
P 29
MDC 2

4.7.2 Implementation issues
Because the nodes have imperfect local clocks, over time the (perspective on the) frame boundaries
will drift apart. Even with frequent resynchronisation, some margin has to be introduced such that
the send interval does not fall outside the receiver's listen interval. We refer to this margin as the
guard time.

For a contiguous sequence of listening slots the radio remains in listening mode such that out of
sync transmissions from other nodes that cross slot boundaries are also received.

Switching the radio from listening to transmitting mode requires a certain amount of time during
which we can neither receive nor send. Currently, this switching time exceeds the guard time,
leading to the timeline illustrated below.

Page 19 of 27
 FP7-ICT-STREP-214755 / QUASIMODO Publicl

4.8 Clock synchronisation

As follows from the description above, the slotted MAC scheme requires nodes to be loosely
synchronised. It suffices for nodes to have a common notion of the frame boundaries (and by
extension the slot boundaries). Synchronisation with an external reference clock (e.g. UTC) is not
required. The smaller the clock difference between sender and receivers, the smaller the slot guard
times can be. Smaller guard times allow for smaller slot sizes (for fixed message sizes) which
reduces the time a node has to be in the energy consuming active state. Alternatively, with the same
energy consumption the number of active slots can be increased which improves network
throughput.

The maximum clock drift rate θ allows us to derive a lower bound on the required guard time tg . If
we assume clocks were perfectly synchronised during the active period of the previous frame, the
maximum clock difference is given by

T f ·2θ

where Tf is the frame length (i.e. the time elapsed since the moment of perfect synchronisation) and
the factor 2 reflects the worst case where clocks have drifted in the opposite direction. This situation
is depicted in the figure below. The first receiver's clock is running slow by a factor of θ . If we
assume the sender's clock is running fast by the same factor, the absolute time difference is given by
the expression above. This justifies the guard time at the end of the sender's slot. Similarly, for a
fast receiver in combination with a slow sender, the guard time at the beginning of the (sender's)
slot is required for successful message receipt.

We have

t g ≥ T f ·2θ

as the theoretical lower bound for the guard time. This implies that at least 2tg is required per slot to
compensate for clock drift (guard time at both beginning and end of the slot). During this time the
receiver is in the power consuming listening mode but not actually receiving messages.

We remark that also senders should be loosely synchronised such that no collisions occur due to
clock differences (rather than TDMA schedule conflicts). However, clock synchronisation

Page 20 of 27
 FP7-ICT-STREP-214755 / QUASIMODO Publicl

requirements between senders are lower by a factor of 2. Consider two perfectly synchronised
senders that have adjacent send slots. Then there is a time difference of 2tg between the end of the
one transmission and the beginning of the other. Hence a clock difference of 2tg or 4θTf can be
tolerated. Consequently, any satisfactory sender-receiver synchronisation mechanism will certainly
satisfy sender-sender synchronisation requirements.

In practice we cannot assume to have perfect initial synchronisation. Moreover, the clock
synchronisation mechanism should take more than one sender-receiver pair into account. As we
typically have more than one receiver per sender it is challenging to establish consensus on the
frame boundary. Based on these observations we expect the guard time required for efficient
communication to be considerably higher than the derived theoretical lower bound.

Note that it is acceptable that the common agreement on the frame boundary shifts gradually from
one side of the network to the other as long as nodes within a communication range have an
appropriately low clock difference.

The clock synchronisation mechanism can use the following information to determine local clock
adjustments.

• Each message contains the slot number n in which it was transmitted (in the perception of
the sender)

• The time td at which a message is delivered is determined by the sender's perception of the
slot start time t0, the guard time tg, the message transmission time tm and the propagation
delay tp. Assuming (estimates for) tg, tm and tp are known, the sender's t0 can be
determined.

For initial synchronisation a node can use the messages sent by each node in the ssync slot. This
allows each node to listen only in the active period, even if this period does not overlap with the
active period of other nodes. In our current implementation slot ssync is chosen randomly in the
TDMA schedule.

The clock synchronisation problem can now be stated as follows:
Based on the information that is available from the existing messages as described above, determine
a clock synchronisation mechanism offering

• Rapid distributed initial synchronisation
• Continued resynchronisation taking node mobility into account (including joins of

previously disconnected networks)
• Fast convergence
• Robustness against benign or malicious desynchronising input (faulty node, active MAC-

level adversary)
• Good trade-off between length of guard time and overall network performance

4.9 Implementation issues

In our current implementation where Tf = 1 s, θ = 20 ppm, S = 1129 and the oscillator frequency
is 32768 Hz we have at a minimum 4 cycles of the total of 29 cycles/slot as guard time. We actually
use 18 cycles as guard time, the remaining 11 cycles are required to transmit the 34 byte message.

Page 21 of 27
 FP7-ICT-STREP-214755 / QUASIMODO Publicl

Currently, the radio subsystem issues an interrupt to the CPU upon successful receipt of a message.
The oscillator is used to determine the time of message delivery. Hence td is only accurate w.r.t. the
29 cycles per slot.

The table below gives some performance characteristics of our current implementation:

Radio current transmission 11.3 mA
Radio current receiving 12.3 mA
Radio current idle 0.9 μA
CPU current operational 0.5 mA
CPU current idle 0.01 mA

5 TERMA: Herschel/Planck software
This case study considers the ACC ASW software, a system for satellite attitude and orbit control used
within the Herschel and Planck satellite systems.

Details of this case study are covered by a distinct non-disclosure agreement

The information below is public.

Based on sensor data, the satellite’s attitude is determined. Using this information, the deviation from the
reference attitude is determined. The result is given to a controller that calculates the torque necessary to
achieve the desired attitude. This torque is then realized through commands to actuators. For orbit control,
ground commands an attitude and a required change of velocity, and the system fires the orbit control
thrusters accordingly.

The health of sensors, actuators and other important control system units are monitored, and actions
taken when errors are detected. These actions comprise (autonomous) re-configuration and error
reporting.

All attitude control related events are reported to ground along with system housekeeping and
diagnostic telemetry, to reflect the status of the attitude control system.

Finally, uploaded attitude control related commands, for example requesting control re-configuration
or certain sensor/actuator activity, are processed and executed, and verification reports on their
successful or unsuccessful execution are downloaded to ground.

Page 22 of 27
 FP7-ICT-STREP-214755 / QUASIMODO Publicl

5.1 ACC ASW Architecture
The architecture of the Herschel/Planck ACC ASW reflects the aim of maximizing the commonality
between the Herschel and the Planck software. The architecture is primarily Herschel-based, since it
generally has more sensors and actuators than Planck does.

The architecture has been described using UML, as supported by the Rational Rose tool, which was a
requirement from our customer. Because the project started before the UML RT profile was mature,
we introduced our own stereotypes to capture real-time properties of classes/objects. These stereotypes
were heavily inspired by the Hard Real-Time HOOD method [HRT-HOOD], which Terma Space has
used on previous projects, since it allows a systematic analysis of the real-time properties of a software
system.

The ACC ASW architecture consists of a number of inter-related subsystems. The subsystems and
their main interrelations are shown in the figure below. Dependencies directed at Failure Detection,
except for the one from Data Acquisition that designates HK collection, have been left out to avoid
cluttering the diagram.

The diagram contains sensor subsystems on the left, subsystems for control and supervision in the
middle and actuator subsystems on the right. External interfaces (to ACC BSW and RTEMS) are
placed at the bottom and at the top of the diagram.

Figure 5-1: Top-Level ACC ASW Architecture

The subsystems are:

• Initialisation, which is responsible for the ACC ASW initialisation and starting of the main
cycle.

• ASW Operations, which defines the operations that are to be called by ACC BSW for
activating ASW and requesting a context saving. This subsystem constitutes the complete
external interface provided by ACC ASW.

Page 23 of 27
 FP7-ICT-STREP-214755 / QUASIMODO Publicl

• Main Cycle Manager, which controls the cyclic activities.

• Database Management, which handles access to and updates of the onboard database and
performs periodic CRC check of the contents.

• High Level Coarse Rate Sensors Management, which handles high-level control, data
conversions and local fault detection for the coarse rate sensors (CRS).

• Low Level Coarse Rate Sensors Management, which handles low-level data retrieval for the
coarse rate sensors (CRS).

• High Level Gyroscope Management, which handles high-level control, data conversions and
local fault detection for the gyroscopes (GYR), Herschel only.

• Low Level Gyroscope Management, which handles low-level commanding and data retrieval
for the gyroscopes (GYR), Herschel only.

• High Level Reaction Control System Management, which handles high-level control, data
conversions and local fault detection for the reaction control system (RCS).

• Low Level Reaction Control System Management, which handles low-level commanding and
data retrieval for the reaction control system (RCS).

• High Level Reaction Wheels Management, which handles high-level control, data conversions
and local fault detection for the reaction wheels (RWL), Herschel only.

• Low Level Reaction Wheels Management, which handles low-level commanding and data
retrieval for the reaction wheels (RWL), Herschel only.

• High Level Star Tracker Management, which handles high-level control, data conversions and
local fault detection for the star trackers (STR).

• Low Level Star Tracker Management, which handles low-level commanding and data
retrieval for the star trackers (STR).

• High Level Sun Sensor Management, which handles high-level control, data conversions and
local fault detection for the sun sensors (SAS).

• Low Level Sun Sensor Management, which handles low-level data retrieval for the sun
sensors (SAS).

• High Level FOG Management, which handles high-level control, data conversions and local
fault detection for the FOG, Planck only.

• Low Level FOG Management, which handles low-level commanding and data retrieval for the
FOG, Planck only.

• Attitude Determinator, which implements mission- and mode-dependent attitude
determination.

• System Interface, which receives and checks incoming telecommands and executes most of
them, and provides support for event and verification report generation.

• Supervisor, which handles reconfiguration, telecommanding, mode transitions, and set-point
generation.

• Controller, which implements mission- and mode-dependent control algorithms to determine
required actuation.

• Data Acquisition, which initiates data collection for housekeeping and diagnostics reporting.

• Failure Detector, which provides failure detection at system level. Most of the “Recovery”
part of FDIR is handled by the Commander component of the Supervisor.

Page 24 of 27
 FP7-ICT-STREP-214755 / QUASIMODO Publicl

• Communication Interface, which provides an interface to the ACC BSW services.

• Operating System Interface, which provides an interface to the RTEMS routines used by ACC
ASW.

• Common Services Software, which describes the ACC BSW services provided to ACC ASW,
i.e. it is an external interface that is not further described.

• Operating System, which describes the RTEMS services used by ACC ASW, i.e. it is an
external interface that is not further described.

A number of system level design paradigms have been driving the design outlined above:

• System level mode transitions - and resulting reconfigurations - are centralised (in Supervisor)
to maintain consistency and base autonomous transitions on a system level perspective.

• Failure detection is distributed across the system thus accommodated as close to the
originating source as possible.

• Failure isolation and recovery takes place at system level, thus being centralised (in
Supervisor).

• All external interfaces are encapsulated in dedicated interface components (Communication
Interface and Operating System Interface) to mitigate consequences of external failures as
well as modifications of interfaces.

• General control engineering is decoupled from vendor specific actuator and sensor
characteristics, thus operating on calibrated engineering values (achieved by having “high-
level” and “low-level” management subsystems for all sensors and actuators).

5.2 ACC ASW Process Structure
The ACC software consists of a number of tasks, some of which are part of ACC BSW and some of
which are part of ACC ASW. This description only deals with the latter. However, when performing a
schedulability analysis, the whole task population of course has to be taken into account.

All tasks within ACC ASW are part of the Main Cycle Manager subsystem, i.e. all other subsystems
contain purely sequential code that is invoked, directly or indirectly, by one of the ACC ASW tasks.

The Main Cycle Manager subsystem contains five tasks:

• Main Cycle, which is a cyclic task, controlling and monitoring the more detailed operations of
the main control cycle.

• Primary Functions, which is a sporadic task performing sensor data acquisition, attitude
determination, guidance and control.

• RCS Control Functions, which is a sporadic task that commands the RCS.

• Secondary Functions, which is a sporadic task, performing the remaining control functions, as
TC handling, diagnostics, TM processing and configuration management.

• Recovery, which is a sporadic task that handles any reconfiguration that takes place as part of
FDIR.

The Main Cycle Manager does not perform the operations itself, it merely orchestrates the cyclic
operation of the ACC ASW, and monitors that the various tasks keep their deadlines.

Page 25 of 27
 FP7-ICT-STREP-214755 / QUASIMODO Publicl

Each of the above tasks has been described using UML activity diagrams. A couple of those are
included below, to give the reader an impression of the way the ACC ASW has been described.

Figure 5-2: Main Cycle Activity Diagram

The activity diagram shown in Figure 5-2 states that before the cyclic processing starts, a 60 ms delay
is performed (in order to ensure that the ACC BSW is in a well-defined state). After that the task is
either Idle or Active, where it in the Idle state is waiting to be periodically released by ACC BSW with
a period of 250 ms. In the Running state it performs a few status recordings and checks, and then
activates the Primary Control Functions task, which is described below.

Page 26 of 27
 FP7-ICT-STREP-214755 / QUASIMODO Publicl

Figure 5-3: Primary Control Functions Activity Diagram

The activity diagram shown in figure Figure 5-3 states that first data is acquired (in some order) from
all sensors and actuators. Then Guidance is performed (Herschel only), after which the current attitude
is determined, the appropriate controller determines the required actuation to be performed, the
Reaction Wheel System (RWS) is commanded (Herschel only), and finally the Reaction Control
System (RCS) task is activated.

5.3 FDIR Approach
Failure Detection, Isolation and Recovery (FDIR) in the HP ACC ASW is both centralised and
decentralised. The functionality necessary for an efficient FDIR mechanism is performed by dedicated
components as well as all other components, depending on the nature of the activity. The different
activities are performed as described below.

• Unit checks are all performed in each High Level Sensor Manager. Some checks, the Str Gyr
Cross Check and the Gyr Diagnostics Check are performed by the Failure Detection

Page 27 of 27
 FP7-ICT-STREP-214755 / QUASIMODO Publicl

component. If data replacement needs to be done, for instance because of failing unit checks,
this is done by each respective High Level Manager.

• Enabling/disabling of unit checks is done by a Unit Checks Manager, which is a part of the
Supervisor. The manager reads the safeguard memory and reconfiguration module to find out
which checks are enabled and then commands each High Level Sensor Manager accordingly.

• Unit check result processing is done in the Failure Detection component. The processing
results in each unit being declared healthy/unhealthy.

• Recovery operations, where an unhealthy unit is replaced by a healthy one, are performed by
the Unit Commanding module. The Unit Commanding module is a part of the Commander,
which is part of the Supervisor.

• Sporadic errors are detected in the affected module, which then calls Failure Detection to
report the error. If any data replacement needs to be done, for instance inside an algorithm, so
that the algorithm can finish, then this is performed by the component itself.

5.4 Research Questions
Since the ACC ASW is an embedded real-time system, a number of quantitative requirements are
applicable. Most of these requirements are related to time, either in the form of deadlines of activities
or in the form of maximal allowed CPU load.

Examples of such requirements imposed by our customer are:

• Herschel ASW shall not exceed 45% (measured) occupancy of CPU load and Planck ASW
not exceed 50%. Note: Included is the execution of BSW SVCs.

• The ASW shall read unit data via the BSW, starting 20ms after the broadcast. Note: This
requires that the BSW has finished reading of units before 20ms after the BC.

• The ASW shall complete all calculations needed to determine RWL commands and provide
them to the BSW before 70 ms after the broadcast.

• The ASW shall complete all tasks allocated to the cycle within 250ms after the broadcast.

• The execution time between start of ASW initialisation and entry of Survival Mode shall be
less than 0.25 s. Note: this time is critical for recovery of serious failures that require that RCS
control be established as soon as possible. Total start-up time is budgeted as 4.5 s.

• The execution time between start of ASW initialisation and entry of Nominal Mode shall be
less than 10 s.

In addition, there are requirements on memory usage, as for example:

• The ASW shall not exceed 350 Kbytes of EEPROM at each PDR and 500 Kbytes at each QR.

• The ASW shall not exceed 1.2 Mbytes of RAM at each PDR and 1.6 Mbytes at each QR.

